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The purpose of this paper is to show that for a certain class of functions [
which are analytic in the complex plane possibly minus (- 00, -1], the Abel series
[(0) +L:, [In)(n(3) z(z - n(3)n-l/n ! is convergent for all (3 > O. Its sum is an
entire function of exponential type and can be evaluated in terms of f Further­
more, it is shown that the Abel series of[for small f3 > 0 approximates [uniform­
Iy in half-planes of the form Re(z) ;;> -1 + 0, 0> O. At the end of the paper
some special cases are discussed.

I. INTRODUCTION

Among the manuscripts of N. H. Abel which appeared for the first time
in his Collected Work there is a paper with the title: "Sur les fanctions
generatrices et leurs determinantes" [1]. In this paper Abel discusses a number
of expansion problems for a special class of functions. One of the expansion
problems, which later turned out to belong to an important class of problems
in the theory of interpolation of entire functions (see [3]), is the following:
Given (complex) constants f3 # 0 and h, expand the functionfh(x) = f(x + h)
in an infinite series of polynomials in x with coefficients of the form
,{In)(h + n(3), n = 0, 1,2,.... In the attempt to solve this problem, Abel
was led to expansions of the type

f(x + h) = f(h) + I (pn)(h + n(3)jn!) x(x - n(3)n-l (1.1)
11=1

which, for h = 0, reduce to the expansions

f(x) = f(O) + I (j(n)(nf3)jn!) x(x - n(3)n-l.
n=1
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For ~ =~ °the expansions (1.1) and (1.2) reduce to the classical ones of
Taylor and McLaurin, respectively.

Abel did not discuss in any detail under what conditions onfthe expansions
(1.1) and (1.2) are valid except for the case thatfis a polynomial.

The first detailed study of expansions of the form (1.1) and (1.2) was made
by G. Halphen [6] and appeared in 1882. Halphen established criteria for
convergence and observed that if ~ °and the series (1.2) converges, then
it represents a special entire function of exponential type. Furthermore,
Halphen observed that, iff is a rational function, then the Abel series (1.2)
converges for all complex x and for all values of ~ for which it is defined
but that in that case the expansion never represents the function unless it is
a polynomial.

It was not until 1935 that a complete solution of the convergence problem
of series of the form (1.2) appeared in a paper by W. Gontcharoff [4] (see
also [3] and [5]). In [4], W. Gontcharoff considered general infinite series,
called Abel series, of the form

Co .~. I CnZ(Z -- n~)n-l/n!,
n,,--l

( 1.3)

where Z is complex and the constants Cn (c== 0, 1,2, ... ) may depend on ~.

If the coefficients Cn (n == 0,1,2, ... ) are of the form f(n)(n~) for some
function f, then (1.3) is called the Abel series generated by f The important
results of Gontcharoff on Abel series contained in [4] can be summarized
as follows.

THEOREM I. (w. Gontcharoff). If ~ # °and if (1.3) converges for one
value of Z ·Ie 0, then it converges for all complex Z and the convergence is
uniform on compact subsets of the complex plane. Furthermore, iffor ~ =1= °
the infinite series converges absolutely for one value of Z 0, then it is
absolutely convergent for all z.

Concerning the properties of the class of functions determined by con­
vergent Abel series Gontcharoff proved the following result.

THEOREM n. (W. Gontcharofl). If f is an entire function of exponential
type and if ~ is a complex constant such that the conjugate indicator diagram
of f is contained in the interior of the compact convex domain GB bounded by
the set of points ]1' satisfying i(~w) exp(1 + ~w)[ 1 and Re(jjw) ·-1,
then the Abel series generated by f converges to f Conversely, if (1.3) is
convergent for some ~ # 0, then its sum is an entire function of exponential
type whose conjugate indicator diagram is contained in the domain GB •
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For generalizations of Theorem II we refer the reader to [3, Chapter Ill].
As we indicated above Halphen observed in [6] that the Abel series

generated by a rational function is convergent. Halphen did not discuss,
however, the relationship, if any, between a rational function and the Abel
series it generates. The main purpose of the present paper is an attempt to
fill this gap. More precisely, we shall show that there exists a class offunctions,
which are analytic in the complex plane minus possibly the real numbers
~ -1, whose Abel series are convergent for all real (3 satisfying (3 :> 0 and
which have the property that for sufficiently small (3 :> 0 they approximate
the functions uniformly in half-planes of the form Re(z) -1 + 0 (0 :> 0).
Examples are given to illustrate the theorem.

Before we start with a discussion of our main result we shall first present
in the next section a simple direct proof of the first part of Gontcharoff's
Theorem II. In doing so, we hope to be able to justify, in part, the method
employed to obtain our main result.

2. ABEL SERIES GENERATED BY ENTIRE FUNCTIONS

We begin with the following preliminary observations.
It follows immediately from Rouche's theorem that if (3 F 0, then for

each complex number t satisfying e I (3t I < 1 the equation z exp(8z) = t
has one and only one root z = z(t) in the open disk {z: [ z I < I 1/(3 j}. Then
for each complex number a the function exp(az(t)), e [ tf3 I < 1 can be
expressed as follows: exp(az(t)) = 0/27Ti) Jexp(af)(F'(f)/F(f)) df, where
F(f) = f exp((3f) - t and the integration is over the circle I f I = 0/1 PI) - E

for sufficiently small E. Observing that

exp(az(t)) = 1 + (1/27Ti) Iexp(af)(Iog(F(f)/(f exp((3f)))' df,

and by integrating the last integral by parts we obtain the well-known
expansion

ex

exp(az(t)) = 1 + I a(a - n(3)n-l tn/n1.
n=l

(2.1)

The expansion (2.1) is, in fact, a convergent Abel series in a for all t
satisfying e [ f3t I < 1.

We replace now in (2.1) a by z and t by wexp((3w). Then we obtain the
well-known expansion

00

exp(zw) = 1 + I z(z - n(3)n-l wn exp(n(3w)/n1. (2.2)
n~l
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The expansion (2.2) is a convergent Abel series in z for all I (3w i
satisfying I (3w exp(l + (3w)1 1.

For each (3 'F 0 we shall denote by Gil the compact convex domain bounded
by the set of points w satisfying i (3w exp(1 _L (3w) 1 = 1 and Re(w(3) -l.
The function z exp((3z) maps the interior of G$ in a one-to-one fashion on
the open disk around the origin of radius 1 (3e I.

Assume now that / is an entire function of exponential type whose
conjugate indicator diagram is contained in the interior of GI3 and let
ep = ep(w) denote the analytic continuation of the Abel-Borel transform
(l/w) S: f(x/w) exp( -x) dx off Then it is well-known that/can be expressed
in terms of rp by means of the inversion formula

fez) = (l/21Ti) r rr(ll') eZ/I' dll',
'y

(2.3)

where y is a simple closed contour containing the conjugate indicator diagram
of/ in its interior. Since, by hypothesis, the conjugate indicator diagram of/
is contained in the interior of G(J we may assume that y is contained in G(J .
Hence, for such a contour y, using the expansion (2.2), we obtain finally
that uniformly on compact subsets of the complex plane the following
expansion holds.

fez) c= (l/21Ti) r rp(ll') exp(zw) dll'
'y

= I (z(z --- 11(3)n-1/11 !) . (l/21Ti) f II" exp(n(3H') r(w) dw
1t=O v

C~ L /<n)(I1(3) z(z - n(3)"-1/11 !,
n-o...,O

(2.4)

and the proof of the first part of Theorem II is completed.

Remark. In this context it is historically of interest to point out that Abel
in his manuscript [1], referred to in the introduction, had already anticipated
the importance of representing functions in the form (2.3). In fact, in [l] Abel
considers functions/which can be written in the formj(z) == f rp(t) exp(zt) dt.
For this reason we have called the function rp in (2.3) the Abel-Borel trans­
form of / in place of the present terminology "the Borel transform of f"

By using expansion (2.2) Abel was able to derive (2.4) for functions / of
the form f rp(t) exp(zt) dt. The derivation being completely formal did not,
of course, enter into questions concerning its validity. Since Abel at that time
also felt that every reasonable function could be written in the form
f rp(t) exp(zt) dt he applied (2.4) to functions other than entire functions such
as log(l + z) for which the expansions (2.4) are not valid as was pointed out
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first by G. Halphen [6]. For a further discussion about this point we refer
the reader to [6, p. 84] and to the Preface of [I].

In view of this it seems to be of interest to investigate the relationship
between a function f, say log(l + z), and the entire function which its Abel
series generates. This will now be done in the next section.

3. ABEL SERIES GENERATED BY CERTAIN ANALYTIC FUNCTIONS

We recall that G. Halphen in [6] observed that rational functions generate
convergent Abel series. Of course, if the rational function is not a polynomial
then its Abel series, representing an entire function, cannot coincide with it.
We shall now show that there exists a class of functions more general than
rational functions whose Abel series are convergent for some range of values
of (3. Furthermore, we shall be able to express the sum of the Abel series off
in terms off For the sake of simplicity we shall limit our discussion to a class
of functions which are analytic in the complex plane possibly minus the set
of real numbers ~ -1. More precisely, we define the following.

DEFINITION (3.1). A function f analytic at z = °is said to be in the class
a iff can be written in the form

1(z) = z CI/(l + zt) dp.,(t),
• 0

(3.2)

where p., is a (complex) Lebesgue-Stieltjes measure on [0, I] of finite total
variation.

It is obvious that iff E a, then f is analytic for all complex values of z
except possibly on the set of negative real numbers ~ - I.

Each f E a has a Taylor series expansion L:~1 anzn, I z I < I, with
coefficients an = S~ (_t)n-1 dp.,(t) (n = 1,2,...).

The derivatives of/can be expressed in terms ofp., by means of the following
formulas

1(n)(z) = n!r ((_t)n-11(1 + ZOM1) dp.,(t).
o

(3.3)

It is easy to see that the functions z/(a + z), Re(a) ? 1; log(l + z),
(Z)1/2 arctan(z)1/2; L::=1 (_1),,-1 zn(n2, etc., are in a.

For everyf E a we shall denote by Aiz; (3) the formal Abel series generated
by f, that is, in symbols

00

Aiz; (3) = I f(n)(n(3) z(z - n(3)"-1/n !.
n~l

(3.4)
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Concerning the Abel series generated by functions in the class Ot we have
the following theorem.

THEOREM (3.5). For each f E Ot and for each ~ > 0 the Abel series (3.4)
generated by f is absolutely convergent and uniformly convergent on compact
subsets of the plane.

Proof From (3.3) it follows that, if ~ > 0, then

Hence, for all I z i C;;; M and for alln = I, 2, ... we have

If(n)(n~) z(z - n~Y'-1/n! I

C;;; (2Ie) ~1-Jln-(l+n) M . (n~)n-1 (I T M/n~)n-1 . Cdip. I
'0

C;;; (2M . exp«M/~ ~. I) .rdip. [)/n2,
o

and the required result follows.
In the next lemma we shall present an expansion similar to (2.1) the proof

of which is now left to the reader.

LEMMA (3.6). Let I ew I I, ~ > 0, 0 < t I and let YJ = YJ(w) be the
unique root of the equation ~tYJ exp( -~tYJ) = w satisfying I ~tYJ [ C;;; I. Then
for all complex z

(exp(-z~tYJ(w» - I)/t

= - L (_t)n-1 YJn(w) exp(-n~tYJ(w)) . z(z - n~)n-1/n!, (3.7)
n=l

where the convergence of Abel's series on the right-hand side of (3.7) is uniform
in z on compact subsets of the complex plane.

If in Lemma 3.6 we take w to be real, then it is easy to see that the equation
t exp(-t) = w has exactly two real roots t1, t2 for all 0 C;;; w C;;; I/e
satisfying 0 C;;; tl C;;; I C;;; t2' For 0 < j3 and 0 < t I we set t 1 =co j3tYJI
and t2 = j3tYJ2' Then 0 < 1)1 1/~t ",; 1)2 and j3t1)1 exp( -j3tYJ1) =
j3t1)2 exp(-j3t1)2) 0= w. Observe now that, if we substitute in the right-hand
side of (3.7) for 1) the roots 1)1 and 1)2 , respectively, then the result will be
the same. Hence, we have the following result.
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LEMMA (3.8). For each 0 < fJ and for each 0 < t ::;; 1, !f YJl , YJ2 are the
unique positive real numbers satis!ving

and

then the following formulas hold Ufl!lormly in z on compact subsets of the
complex plane.

= - I (-I )n-l z(z - nfJ)n-l tn- 1YJln exp(-(ntfJ + 1) 7]1)/n! , (3.9)
n=l

alld

= -- I (_1)n-l z(z - nfJ)n-l tn- 1YJ1 n exp( -(ntfJ + I) YJ2)/n! . (3.10)
n~1

For every x ?: 1 we shall denote by w = w(x) the unique root of the
equation gexp(~g) = x exp(-x) satisfying 0 ::;; w(x) ::;; 1. Then w = w(x)
is a decreasing function of x which decreases from one to zero as x increases
from one to infinity. Now it is obvious that in Lemma 3.8 the root 7]1 may be
considered to be a function of 'Y)2 and, in fact, 7]1 can be expressed in terms
of YJ2 be means of the formula YJl = W(fJtYJ2)/fJt (fJ > 0, 0 < t ,~ 1). With
this additional notation we are now in a position to prove the main result
of the paper.

THEOREM (3.11). For each fE Ot and for each fJ > 0 we have jar all z
satisfying Re(z) > -I.

Af(z; fJ) = fez) - C(1/t 2)(J'" (exp( -zw(fJx)/fJ)
• 0 1/8

- exp(-zx)) exp(-x/t)dx) dp.(t)

= j(z) + exp(-z/fJ) C(exp( -1/fJt))/t(l + zt) dp.(t)
'0

- (I/t 2)(f'" exp(--zw(fJx)/fJ - x/t)dx) dp.(t). (3.12)
0' 1/8

Furthermore, !f 0 < 0 < 1, then for all z satisfying Re(z) > --1 + 0
we have the following estimate

! AtCz; fJ) - 8(z)1 ::;; (1/0) ( (exp( -o/fJt))/t) d i p.1(t). (3.13)
'0
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In particular, AtCz; [3) tends to f uniformly in Re(z) -1 0, 0 > 0 as [3
tends to zero.

Proof From (3.9) and (3.10) it follows easily that if Re(z) --1, then

f - (f/Bt (l/t)(exp( ~Zt7)l) - 1) exp( --7)1) d7)1
o 0

--;- r O/t)(exp(~Zt7)l) -- 1) exp( -7)2) d7)2) dfL(t)
I/At

= rUjX '~I «_I}n-I Z(z --n[3)n-1 tn- I 7)" exp(-(ntf3 1)7)))/nl) d7)) dfL(t)

= r(~ (-1 )n-l z(z - nf3)'H tn-I/O -:-- nt[3)n+!) dfL(t) =~ Af(z; [3);

and

](Z) c_~ Zr(1/(1 --;- zt» dfL(t)
o

=~r-(j~'l) (I/t)(exp(zt7) - I) exp(-7) d7)) dfL(t)

.1 (l/Bt
= j - f (l/t)(exp(-zt7)l) - 1) exp(-7)I) d7)1

o 0

,- j''l'l (I/t)(exp( -Zt7)2) - I) exp(--7)2) d7)2) dfL(t).
1/8t

Hence,

Af(z, [3) ~." ](z)

- ( (Jl~Bt (l/t)(exp( -Zt7)l) -exp( -Zt7)2») exp( -7)2) d7)2) dfL(t).

Replacing 7)1 by 7)1 ~= w(f3t7)2)f[3t and applying the change of variables
t7)2 = x to the inner integral and observing that

r(fro (1/t2)(exp(-zx -- x/t» dX) dfL(t)
o liB

,I

exp( -z/[3) j (exp( -1/[3t»/t(l I- zt) dfL(t)
o

we obtain the first part of the theorem. For the proof of the second part of
the theorem we have only to observe that if f3 > 0 and Re(z) ~ -1 + 0,
where 0 < 0 < 1, then, since YJI YJ2, we have that
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i fez) - Af(z; ,8)1 ~ J.l (I/t)(r~ exp( - (112) .11]2) .1 Ip, I(t)
o 1/13t

.1

= (1/0) j (l/t) exp(-o/,8t) .1 Ip, i(t),
o

371

and the proof is finished.

Remarks 1. The function exp(--zl,8) f~ (exp(-II,8t)lt(1 + zt» .1p,(t)
Re(z) > -1, can be extended analytically into the complex plane minus the
negative real numbers ~ -1. Sincef and At are both analytic in that domain
it follows that the function f~ (llt2)(f~13 exp«( -zw(,8x)l,8 - xlt) (dx) .1p,(t)
can be extended analytically to the same domain.

2. If 0 < ,8 < 0, then f~ (lIt) exp( -ol,8t) .1 Ip, I(t) ~ exp( -01,8) f~ .1 Ip, I·
Furthermore, by observing that for each a > 0 and for each k == 1, 2, ...
the function Uk exp( -au) attains its absolute maximum at u = k(a in u c? 0,
we obtain that for all z satisfying Re(z) c? -1 + 0, 0 < 0 < 1, ,8 > 0 and
for all k = 1,2,... if(z) - AtCz, ,8)[ :c:::; ((110k+1) Pe-k f~ tk- 1 .1 I p, I) j3".

4. EXAMPLES

I. In [2] Viggo Brun posed the problem of determining the sum s of
the infinite series L:~o nrl I(n + 2)"+2, where we set 00 = 1. The first correct
answer was presented by O. Kolberg in [7]. Kolberg arrived at his answer
by observing that the infinite series is related to the Abel series generated
by a simple rational function. For the sake of completeness we shall present
a solution based on Theorem 3.11.

Consider the rational function fez) = z/2(z + 2). It is easy to see that
f E: C7. Indeed, we have zl2(z + 2) = f~ z/(l + zt) dp,(t), where p, is the discrete
measure concentrated at t = "~ with total measure t. It is not difficult to see
that the Abel series generated byfhas the following form

AtCz;,8) = I (-I)"-l z(z -n,8}"-I/(2 + n,8)"+1. (4.1)
11 ~=1

Observe now that

00

s = 2 I n"/(n + 2)" ,2 = 2AtC2, 2).
,,~o
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Hence, S = 2(AtC2, 2) - 1(2» + }. According to Theorem 3.11

A f (2, 2) - 1(2) = -- Hi)r (exp(-w(~) -~) - exp(-2~» dg
1

= e- 2/4 - mrexp(--w(g) -g) dg,
1

and so, we obtain the following formula

S =~ I nnl(n + 2)n+2 = ~c -f- e-2j2 -- fOC exp(-w(g) -g) dg. (4.2)
n~O 'I

In order to obtain Kolberg's formula we set, following Kolberg,
x = exp(-g) and y ~= exp( -w(g)), then x and y satisfy the relation XX = yY.
Hence, if we set x/y = t, then x and y can be expressed in terms of t by the
formulas: x = t1 /(I-t) and y == t l /(I-t). Observe now that, if x increases
from 0 to lie, then t increases from 0 to 1; and if t tends to 0, then x(t) tends
to 0 and yet) tends to 1; and, if t tends to 1, then x(t) and yet) both tend to
l/e. Furthermore, if t increases from 0 to 1, then y decreases from 1 to lIe.

We conclude that J~ exp( -w(g) - g) dg = J~/e y dx= i~ (x(t)/t)dx(t)=c=
mJ~ (l/t) dx2(t) == e-2/2 + (D J~ X 2(t)/t 2dt == e-2/2 + mJ~ t2l /(1-I) dt, and
so, finally we obtain Kolberg's result namely:

~ ,1 ~

S = L nn/(n + 2)n+2 = (1 - f t2l /(1-1) dt )/2 = -~ - J tli(t + 2)(/+2) dt.
'n~O 0 0

(4.3)

Formula (4.3) can also be obtained from (4.2) by remarking that if we write
w(g) = gyW, g ;:?; 1, then it follows immediately from w(x) exp( -w(x») =
x exp(-x), x;:?; 1 that y is the inverse function of the function
g = (log 7])/('1] -- 1),0 < 7] :s; I, and so, y((log 1])/('1] - 1» = '1],0 < 1] :s; 1.
Observing that J~ exp( -w(g) - g) dg = J~ exp(g - gy(g» exp( -2g) dg and
substituting g = qJ(t) = (log t)/(t- 1) we obtain that

fOC exp(-w(g) -g) dg
1

= -- r(lIt) exp(-2qJ(t» dqJ(t) = i r(lIt) d(exp( -2qJ(t)
o 0

J
l .1

= e-2/2 + t-2exp(-2qJ(t» dt = e-2/2 + J t 21 /(I-l) dt,
o 0

and again we have arrived at (4.3).
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2. If (L(t) = t is the Lebesgue measure, then fez) = log(l -I- z) E ct.
In this case, f<n>(z) = (_I)n-l(n - I)! (l -I- z)-n, n = 1,2,... , and so, if
f3 > 0, then

00

AtCz ;f3) = I (_I)n-l z(z-nf3)n-1In(1 -I-nf3)n. (4.4)
H=l

Hence, by Theorem 3.11, we have for all f3 > °and for all z satisfying
Re(z) > -I

oc

I (-1) n-l z(z - nf3)"-l/nO -I- nf3)"

= log(l -I- z) -I- exp(-(z -I- 1)/f3)j'" exp(-tlf3)/(t -I- z -I- ]I) dt
o

- ((llt2)((~ exp( -zw(f3x)/f3 - xlt) dX) dt. (4.5)

From

r(llt 2)(J'" exp( -zw(f3x)/f3 - xlt) dX) dt = {X) (exp( -zw(x)lf3 - x/f3)lx) dx
o 1/13 ' 1

we obtain the formula

00

I (_1)n-l z(z - nf3)n-1/11(1 -I- 11f3)11
n-l

.00

= log(l -I- z) -I- exp(-(z -I- 1)1f3) j exp(-tlf3)/(1 -I- z -I- t)dt
o

- J~oo (exp(-zw(x)/f3 - xlf3)lx) dx. (4.6)

From (3.13) it follows, in particular, that for all z satisfying Re(z) ;;0, 1 -I- I),

where I) > 0, we have

I f (_1),,-1 z(z - nf3)n-1/n(l -I- nf3)" - log(l -I- z)1 ::;; (f3/1)2) exp( --I)/f3)·
n=l

(4.7)

Ifwe put z = 2 and f3 = I in (4.6), then we obtain the following corrected
version of a formula due to Abel [l, Second edition, p. 74]

f (n - 2)n-1/11(n -I- l)n = log V3 -I- CD foo (exp(-(3 -I- t))/(3 -I- t)) dt
11=1 0

- m (OC oIx) exp( -2w(x) - x) dx. (4.8)
-1
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